Tech Notes

Conversion Factors For Emissions Calculations

Preparing emissions estimates for environmental authorities can be difficult because they often ask for emissions expressed in units not available through existing data. Here are the conversion procedures for some of the more commonly-used measurement systems:

1) $\mathbf{p p m}$ at $\mathbf{3} \% \mathrm{O}_{\mathbf{2}}$ (15% excess air) in dry flue gases to $\mathbf{l b}$./million Btu $(\mathrm{ppm})\left(\mathrm{F}_{3}\right)=\mathrm{lb} . /$ million Btu

Values of multiplier F_{3} for various fuels and emissions

Various Fuels	NOx Measured As NO_{2}	CO	Aldehydes, Measured As Formaldehyde	Unburned Hydrocarbons, Measured As:		CO_{2}	SO_{2}
				Methane	Propane		
Birmingham Nat. Gas*	. 001187	. 000722	. 000781	. 000416	. 001147	. 001147	. 001672
Propane	. 001185	. 000721	. 000780	. 000415	. 001146	. 001146	. 001669
Butane	. 001212	. 000735	. 000798	. 000424	. 001172	. 001172	. 001707
\#2 Oil**	. 001317	. 000801	. 000867	. 000461	. 001273	. 001273	. 001854

2) $\mathbf{l b} . /$ million Btu to ppm at $\mathbf{3} \% \mathrm{O}_{2}(15 \%$ excess air) in dry flue gases
(lb./million Btu) $\left(\mathrm{f}_{3}\right)=\mathrm{ppm} @ 3 \% \mathrm{O}_{2}$, dry
Values of multiplier f_{3} for various fuels and emissions

Various Fuels	NOx Measured As NO_{2}	CO	Aldehydes, Measured As Formaldehyde	Unburned Hydrocarbons, Measured As:		CO_{2}	SO_{2}
				Methane	Propane		
Birmingham Nat. Gas*	842	1385	1280	2404	872	872	598
Propane	844	1387	1282	2410	873	873	599
Butane	825	1361	1253	2358	853	853	586
\#2 Oil**	759	1248	1153	2169	786	786	539

3) $\mathbf{p p m}$ at $\mathbf{0 \%} \mathbf{O}_{\mathbf{2}}$ in dry flue gases to $\mathbf{l b}$./million Btu
$(\mathrm{ppm})\left(\mathrm{F}_{0}\right)=\mathrm{lb} . /$ million Btu
Values of multiplier Fo for various fuels and emissions

Various Fuels	NOx Measured As NO_{2}	CO	Aldehydes, Measured As Formaldehyde	Unburned Hydrocarbons, Measured As:		CO_{2}	SO_{2}
				Methane	Propane		
Birmingham Nat. Gas*	. 001017	. 000617	. 00067	. 000356	. 000983	. 000983	. 001432
Propane	. 001018	. 000619	. 00067	. 000356	. 000984	. 000984	. 001434
Butane	. 001042	. 000634	. 000686	. 000365	. 001007	. 001007	. 001468
\#2 Oil**	. 001133	. 00069	. 000746	. 000397	. 001096	. 001096	. 001596

* 1002 Gross Btu/cubic foot, 8.48 Cubic feet dry flue products at stoichiometric ratio.
${ }^{* *}$ Calculated as heptadecane, $\mathrm{C}_{17} \mathrm{H}_{36}, 19,270$ Gross Btu/lb.
(continued on page 99)

4) $\mathbf{l b} . /$ million $B t u$ to $\mathbf{p p m}$ at $\mathbf{0 \%} \mathbf{O}_{2}$ in dry flue gases
(lb./million Btu) $\left(\mathrm{f}_{0}\right)=\mathrm{ppm} @ 0 \% \mathrm{O}_{2}$, dry
Values of multiplier fo for various fuels and emissions

Various Fuels	NOx Measured As NO_{2}	CO	Aldehydes, Measured As Formaldehyde	Unburned Hydrocarbons, Measured As:		CO_{2}	SO_{2}
				Methane	Propane		
Birmingham Nat. Gas*	983	1621	1493	2809	1017	1017	698
Propane	982	1616	1493	2809	1016	1016	697
Butane	960	1577	1458	2740	983	983	681
\#2 Oil**	883	1449	1340	2519	912	912	627

5) ppm at $\mathbf{3 \%} \mathrm{O}_{\mathbf{2}}$ or $\mathbf{0} \% \mathrm{O}_{\mathbf{2}}$ in dry flue gases to $\mathbf{l b}$./year

First, calculate lb./million Btu with Step 1 or 3 on the first page. Then convert to lbs./year with the following relationship:
(lb./million Btu) (Maximum Burner Input, million Btu/hr.) (operating hrs./year) = lb./year
6) $\mathbf{l b} /$ year to ppm at $\mathbf{3 \%} \mathrm{O}_{\mathbf{2}}$ or $\mathbf{0 \%} \mathrm{O}_{\mathbf{2}}$ in dry flue gases
lb ./year \div operating hrs./year \div Maximum Burner Input, million Btu/hr. = lb./million Btu

Convert lb./million Btu to ppm with Step 2 or 4.
7) $\mathbf{p p m}$ at $\mathbf{3 \%} \mathrm{O}_{2}$ or $\mathbf{0} \% \mathrm{O}_{\mathbf{2}}$ in dry flue gases to $\mathbf{g m} / \mathrm{Nm}^{\mathbf{3}}$ $(\mathrm{ppm})(\mathrm{G})=\mathrm{gm} / \mathrm{Nm}^{3}$

Values of multiplier G for various emissions

Emission	NOx Measured As NO_{2}	CO	Aldehydes, Measured As Formaldehyde	Unburned Hydrocarbons, Measured As:		CO_{2}	SO_{2}
				Methane	Propane		
G	. 002031	. 001235	. 001341	. 000716	. 001969	. 001965	. 002861

8) $\mathbf{g m} / \mathrm{Nm}^{\mathbf{3}}$ to ppm at $\mathbf{3 \%} \mathrm{O}_{\mathbf{2}}$ or $\mathbf{0} \% \mathrm{O}_{\mathbf{2}}$ in dry flue gases $\left(\mathrm{gm} / \mathrm{Nm}^{3}\right)(\mathrm{g})=\mathrm{ppm}$

Values of multiplier g for various emissions

Emission	NOx Measured As NO_{2}	CO	Aldehydes, Measured As Formaldehyde	Unburned Hydrocarbons, Measured As:		CO_{2}	SO_{2}
				Methane	Propane		
g	492.4	809.7	745.7	1396.6	507.9	508.9	349.5

[^0]
Tech Notes

Correcting Emissions Readings to $3 \% \mathrm{O}_{2}$ or $11 \% \mathrm{O}_{2}$ Basis

Many environmental authorities, including the U.S. EPA and several European agencies, require that gaseous pollutants, like NO_{x} and CO, be reported in ppm (parts per million by volume) corrected to a based of 3% excess O_{2}-or 15% excess air-in the flue gases. Japan, on the other hand, customarily uses a base of $11 \% \mathrm{O}_{2}$.

Emission readings taken at different oxygen levels can be easily converted to a standard base using a multiplier:

$$
\mathrm{ppm}_{\text {corrected }}=\mathrm{ppm}_{\text {test }} \mathrm{x} \text { multiplier }
$$

The multiplier is calculated from the oxygen reading taken during the test and the base oxygen reading required by the regulation:

$$
\text { multiplier }=\frac{21-\% \mathrm{O}_{2} \text { base }}{21-\% \mathrm{O}_{2} \text { test }}
$$

For your convenience, a table of multipliers is presented to the right.

	Multiplier For:	
$\mathbf{\% O}_{\mathbf{2}}$	$\mathbf{3 \% \mathbf { O } _ { \mathbf { 2 } }}$	$\mathbf{1 1 \% \mathbf { O } _ { 2 }}$
0	.86	.48
1	.9	.5
2	.95	.53
3	1	.56
4	1.06	.59
5	1.13	.63
6	1.2	.67
7	1.29	.71
8	1.38	.77
9	1.5	.83
10	1.64	.91
11	1.8	1
12	2.0	1.11
13	2.25	1.25
14	2.57	1.43
15	3.0	1.67
16	3.6	2
17	4.5	2.5
18	6	3.33
18.5	7.2	4
19	9	5
19.5	12	6.67
20	18	10
20.2	22.5	12.5
20.4	30	16.67
20.6	45	25
20.8	90	50

[^0]: * 1002 Gross Btu/cubic foot, 8.48 Cubic feet dry flue products at stoichiometric ratio.
 ** Calculated as heptadecane, $\mathrm{C}_{17} \mathrm{H}_{36}, 19,270$ Gross Btu/lb.

