Digital remote display for Flow Meter DM /DE

Universal meter UZ

Indication of the quantity consumed in \mathbf{m}^{3}

Features

- LED-Display 14.2 mm red
- Indicating range -99999 999999
- 0 ... 3 Decimal points programmable
- Up- and down counter function
- 2 digital inputs for summation and subtraction
- Integrated transmitter-supply 24 / 8V DC
- Auto-reset or external reset
- 2 preset outputs SPDT relay (optional),
- Display conversion programmable
- Isolated analog output
- 0/4 ... 20mA and 0/2 ... 10V DC (optional)
- Front protection IP65

General

The universal meter UZ has been designed for process engineering and automation environments. All parameters can be programmed. The counter can be used wherever quantities or processes must be measured, displayed and controlled or regulated.

Short information

Programming	Parameters are programmed via front-side membrane keypad
Transmitter-supply	The integrated transmitter supply allows direct connection of pnp initiators, light barriers, mechanical switch contacts, proximity switches, rotary encoder (24 V DC) and Namur initiators (8 V DC).
Input prescaler	$A n$ input prescaler has separate programming function for input A and B.
Display conversion	A separate programmable divisor and factor makes the display adaptable as required.
Preset outputs	Preset outputs can be programmed as continuous contact or pulse contact. Switching performance is programmable as minimum or maximum function.
Analog output	Proportional to input pulses an isolated analog output signal $0 \ldots 20 \mathrm{~mA}$ 0 ... 10 V DC or $4 \ldots 20 \mathrm{~mA} / 2$... 10V DC can be generated. Start value and end value are programmable. Output changed automatically from current signal to voltage signal, depending on burden.

Technical Data

Power supply

Supply voltage
Power consumption
Operating temperature
: 230 V AC $\pm 10 \%$;

Rated voltage
Test voltage
CE - Konformität
Input
pnp-input
Namur input
Counting frequence max.:
Counting delay
Min. pulse width
Transmitter-supply

Display

Indicating range
Additional display

Output

Relay:
Analog output
Accuracy
Panel case
Dimensions
Weight
Electrical connection
Protection
: max. $3,5 \mathrm{VA}$, with analog output 5 VA
$-10 \ldots+55^{\circ} \mathrm{C}$
250V~ acc. to VDE 0110 Degree of pollution 2, over-voltage category III
4 kV -, between input / output / supply voltage
: max. $3,5 \mathrm{VA}$, with analog output 5 VA

EN55022, EN60555, IEC1000-3/4/5/11/13
$\mathrm{Ri}=6,3 \mathrm{k} \Omega \quad$ switching level: $<4 \mathrm{~V}$ low; $>8,5 \mathrm{~V}$ high;
hysteresis $>2,5 \mathrm{~V}$, max. 35V DC
Ri ca $1 \mathrm{k} \Omega(<4 \mathrm{~mA}) \quad$ switching level: $<1 \mathrm{~mA}$ low; $>2,2 \mathrm{~mA}$ high; hysteresis $>0,5 \mathrm{~mA}$ max. 35V DC
Input A or $B=15 \mathrm{kHz}, A$ and B together $=6 \mathrm{kHz}$, switch contact $=30 \mathrm{~Hz}$, 2-channel rotary pulse generator $=8 \mathrm{kHz}$
$100 \mu \mathrm{~s}$ when reset; 20 ms when programming another preselection
: \quad electronic pulse $50 \mu \mathrm{~s}$, switch contact 5 ms
: $\quad 8 \mathrm{~V}$ DC controlled (Namur), 24V DC (pnp), Ri abt. 150Ω,
: LED red, 14,2mm
: -99999 ... 999999 Digit with leading zero suppression
: LED 2- digit red, 7 mm (parameter - and output indicator)
SPDT <250V AC<250VA<2A, <300V DC $<50 \mathrm{~W}<2 A$
: $\quad 0 / 4 \ldots 20 \mathrm{~mA}$ burden $\leq 500 \square ; 0 / 2 \ldots 10 \mathrm{~V}$ burden $>500 \Omega$, isolated
: Automatic output changing (burden dependent)
: 0,1\%; TK 0,01\%/K
DIN 96x48mm, material PA6-GF; UL94V-0
Front $96 \times 48 \mathrm{~mm}$, mounting depth 100 mm
: max. 390 g
Clamp terminals, $2 \mathrm{~mm}^{2}$ single wire, $1 \mathrm{~mm}^{2}$ flexible wire, AWG14
Front IP65, terminals IP20, finger safe acc. BGV A2 (oldVBG4)

Dimensions

Panel cut-out acc. to DIN $43700-96 \times 48 \mathrm{~mm}$

Connection diagrams

Terminal strip A

Terminal strip B (varies with version) 2 preselect (alarm) outputs

Relais

Terminal strip C (varies with version) Analog output

Terminal strip D Supply voltage

Controls and indicators

Description

Operation of the device is arranged in 2 levels. The requested parameter can be called by
\square button. Selection within a parameter or entering data, use buttons
and ∇. Parameters are stored zero-voltage safe in the EEPROM.
Button combinations:
\square one parameter back.
setting parameter to zero or minimum value.
After turn on the supply voltage, the device is working in the Working level. Set points of preset outputs can be selected.
Activating the button for more than 2 seconds, the program is jumping into the Configuration level. Now all parameters, defining the function of the counter can be programmed. These maybe the measuring input, input configuration, conversion of the displayed value, switching performance of preset outputs and the analog output signal.
After finishing the configuration or when longer than 2 minutes no button was pushed, the program jumps back to the working level. Leaving the configuration level is possible at any time when pushing the button ζ for 2 seconds.

Error messages:

P E	Reading this message in the parameter display, parameter failure has been occurred. The display flashes. When pushing one of the buttons the error code will be deleted and the counter is running with factory settings. Configuration and function of the counter must be checked. If error occurs again, please ship the counter to factory for repair service.
Loc	Programming lock active \Rightarrow see configuration page 9
of	Overflow \Rightarrow also see page 11

Start-up note:

Before the device can be used, it must be configured for the intended use.
\Rightarrow see page 6

Notes to representation

Parameter only shown when configurated

Note: All parameters can be called if they are not blocked by other programmed parameters and if they are available. Factory settings are shown in [].

Working level

Configuration Level

Description

[Factory setting]
Operating level

Prescaler input A

Setting possible from : ... 9999 digit with buttons \sim and ∇.
(Only every $\mathrm{n}^{\text {" }}$ pulse is counted)
5

Prescaler input B
Setting possible from / ... 9999 digit with buttons \triangle and ∇
(Only every $\mathrm{n}^{\text {º }}$ putse is counted)

Φ

Transmitter supply / input level
$=24 \mathrm{~V}$ DC for pnp-initiators
$U=8 \quad=8 \mathrm{~V}$ DC for Namur-initiators*
(*with ext. 5V supply also suitable for TTL signals)
$t E S t \quad=$ only for factory settings.
Selection with butions $\boldsymbol{\Delta}$ land $\boldsymbol{\nabla}$.

Count value for power-on
-ESEE = load start value ($5 t$) (see page 7)
rE5 tor = count value is stored if power fails
Selection with buttons Δ and ∇.
5

Decimal point position
[0.]
.000
.00
.0
0 .
Selection with buttons $\boldsymbol{\Delta}$ and .
continue
page 7

Button Display Description [Factory settings]

Divisor for display
Setting possible from / ... 9999 digit, with buttons $\boldsymbol{\Delta}$ and ∇.
\Rightarrow also see page 11
Φ

Factor for display [1]
Setting possible from ' ... 9999 digit, with buttons A and ∇. \Rightarrow also see page 11
\square

Start value
Count value after reset
Setting possible from -99999 ... 999999 digit, with buttons $\boldsymbol{\Delta} \boldsymbol{\operatorname { l }}$ and ∇.

End value
[OFF]
o $F F$: the counter operates as totalizing counter in the full range range. When reaching the value -99999 or 999999 the counter stops. In the case of overflow the display flashes.
on: the counter operates as ring counter between start value $5 t$ and end value En (see following parameter)
Selection with buttons Δ and .

Note: Parameter is only displayed if $\varepsilon_{n}=O_{n}$ and occupied setpoint preset of output A1.

\square

Setpoint output A1
[8]
Setting possible from -99999 ... 999999 digit, with buttons \quad and ∇.

5

Switching time output A1 [sec].
[1.00]
Setting possible from $0.01 \ldots 99.99 \mathrm{~s}$, with buttons Δ and ∇.

5

Switching performance of preselect (alarm) output A2
[OFF]
oFF $\quad=$ no output
onL (min) = continuous contact: on-off
on, (max; $=$ continuous contact: off-on
on \cap (max) $=$ pulse contact: off-on-off
on $v(\mathrm{~min})$ pulse contact: on-off-on
Selection with buttons $\underset{A}{ }$ and ∇.

Setpoint output A2
[0]

Setting possible from-99999 ... 999999 digit, with buttons \triangle and ∇.
\square

Switching time output A2 in sec.
[1.00]
Setting possible from $0.01 \ldots 99.99 \mathrm{~s}$, with buttons \triangle and \sim.
Note: Switching performance, setpoint and switching time of the preselect outputs A1 to A4 are identical.

Description
[Factory settings]
Analog output
$0-20 \mathrm{~mA} \quad(0-10 \mathrm{~V} D)$
$4-20 \mathrm{~mA}(2-10 \mathrm{VDC})$.
Changing from current to voltage output is load-dependent
($\leq 500 \Omega=$ current output, $>500 \Omega=$ voltage output).
Selection with buttons λ and ∇.

Start value for the analog output
Setting possible from -99999 ... 999999 digit, with buttons Δ and
\square

End value for the analog output
[0]
Setting possible from -99999 ... 999999 digit, with buttons - and ∇.
If the Start value $A S>A E$ the output works with a decreasing characteristic.
\square

Program lockout.
oFF $=$ no lock
$C O F K=$ oonfiguration level locked
Q $C=$ all parameters locked
$C A L=$ only with analog output (only for factory settings)
Selection with buttons and
\square

Return to the working level (count value)

Connection diagramms for flow meter DM/DE

Example of programming for Flow Meter DM/DE

Conection on pulser E1 or E 200

Table 1

Parameter	Designation / Display	Input
Input cofiguration	FU	A-b or A u. B
Prescaler input A	dA	1
Prescaler input B	db	1
Transmitter supply	In	$\mathrm{U}=24 \mathrm{~V}$ or $\mathrm{U}=8 \mathrm{~V}$ for Sensor of Namur (E200)
Count value for power-on	Po	rEStor
Decimal point position	dp	.0
Divisor for display	d	1 at E1 (E200 see Table 2)
Factor for display	F	1 at E1 (E200 see Table 2)
Start value	St.	0
End value	En	off

Switching performence preselect (alarm) output A1	Al	
Setpoint output A1	Al.	
Switching performence preselect (alarm) output A2	A2	
Setpoint output A2	A2.	
Analog output	Ao	
Start value for the analog output	AS	
End value for the analog output	AE	
Program lockout LC as required		

Differing from the above table, by connection on pulse generator E200 of the flow meter, are input following parameter:

Table 2

		cp-value of the flow meter (Imp./m³)			
Parameter	Designation / Display	5000	500	250	187,5
Prescaler input A	dA	1	1	1	1
Prescaler input B	db	1	1	1	1
Divisor for display	d	5000	500	250	1875
Factor for display	F	1	1	1	10

Display adjustment from universal meter and flow meter

Procedure:
For the configuration of the universal counter, you have to put at parameter "Start value" (page 7) the present value of the flow meter.
If the configuration is finished, the clamps 4 and 6 on terminal strip A , are interconnected transient. Afte the reset, the input value appears on the display.

Display conversion

For some settings of the divisor (\boldsymbol{d}) and factor (\boldsymbol{f} it is possible that the meter will not cover the possible display range of the unit (0-999999). The following formula relationship applies:

Maximum display range $=\frac{8 \times 10^{6} \times \text { factor (F) }}{\text { Divisor (d) }} \quad$ should be >999999

If this check produces a value of less than 999999 , the meter will only be able to count to this display value. The problem can be avoided if the scaler $\boldsymbol{d} \boldsymbol{A}$ or $\boldsymbol{d} \boldsymbol{b}$ is included in the configuration.

Example:

In a measuring device the flow rate is to be recorded in m^{3}, and displayed without any decimal places. The sensor used supplies one pulse every $0.084 \mathrm{~m}^{3}$.
To program the display conversion this sensor constant must first be converted into a fraction. This is as follows:

Sensor contact $=\frac{\text { Factor }(F)=84}{\text { Divisor }(d)=1000}$

Therefore the value 84 must be entered for the factor \boldsymbol{F} and 1000 for the divisor \boldsymbol{d}. However, if we now check the maximum display range, we obtain the following:

Maximum display range $=\frac{8 \times 10^{6} \times 84}{1000} \quad=672000$

This means that the meter can only display up to a maximum value of 672000 at which point it will stop. If this is inadequate it is possible to transfer part of the divisor to the scaler $\boldsymbol{d} \boldsymbol{A}$ or $\boldsymbol{d} \boldsymbol{b}$. In this case, if the divisor \boldsymbol{d} were to be reduced to 500 the maximum display range would be >999999, so that the unit could be used to the full extent.

The procedure for this is as follows:
The divisor \boldsymbol{d} is set to 500 and the scaler $\boldsymbol{d} \boldsymbol{A}$ or $\boldsymbol{d} \boldsymbol{b}$ (depending on which input is used) is set to 2 .
These settings produce the following:
Maximum display range $=\frac{8 \times 10^{6} \times 84}{500}=1344000$
This means that the display conversion is now configured perfectly for this application.

We reserve the right to make technical modifications in the interests of progress.

Zentrale Kundendienst-Einsatz-Leitung	Further support is available from your	G. Kromschröder AG
für Deutschland:	local branch office/agent.	Postfach 2809
G. Kromschröder AG, Osnabrück	The adresses are available on the Internet	D-49018 Osnabrück
Tel. $0541 / 1214-365$	G.Kromschröder AG, Osnabrück.	Strotheweg 1
Fax $0541 / 1214-547$	www.kromschroeder.de	D-49504 Lotte (Büren)
	info@kromschroeder.com	Tel. $0541 / 1214-0$
		Fax $0541 / 1214-370$

